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The morphology changes of linear diblock copolymer lamellar microdomains under uniform simple shear
are studied via the dissipative particle dynamics technique. The parallel and perpendicular reorientations of the
lamellae are observed in the simulations, and two different reorientation mechanisms, under small and large
shear rates respectively, are proposed. The parallel-to-perpendicular transition is also observed and the kinetics
is discussed. Sinusoidal and chevron instabilities due to the shear are found. After relaxation the peculiar
“bidirectionally undulating” instability is obtained.
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I. INTRODUCTION

Block copolymers are macromolecules composed of se-
quences of chemically distinct and mutually incompatible
monomers that are covalently bonded. They tend to form
various ordered morphologies which are in general on the
nanometer scale through self-assembly and microphase sepa-
ration. This is a desirable property in research areas such as
supramolecular chemistry, materials science, and nanotech-
nology. The morphologies of block copolymers can be sys-
tematically controlled by carefully choosing the polymer
segments �the Flory-Huggins interaction parameter ��, the
chain length �the degree of polymerization N�, and the com-
position �the monomer volume fraction f�. Thus block co-
polymers have become the model molecules in the above-
mentioned disciplines and have attracted intensive
theoretical and experimental attention �1–5�.

Diblock copolymers, which are block copolymers
composed of only two distinct types of monomers, in
particular, have attracted considerable research activities
due to their inherent simplicity. Classical equilibrium
microstructures such as lamellae �LAM�, hexagonally
packed cylinders �HEX�, and spheres positioned on body-
centered-cubic lattice �bcc� have been identified experimen-
tally and predicted theoretically for quite a long time. Re-
cently, hexagonally modulated lamellae �HML�, hexagonally

perforated layers �HPL�, and bicontinuous Ia3̄d gyroid �G�
were discovered. Among these many phases, lamellar phase
is the most studied one.

The behavior of lamellae under shear flow is of great
interest to both scientists and engineers. Shear can be used to
change the orientation of the microphases and to obtain glo-
bally aligned structures. Three orientations have been ob-
served under various conditions: the parallel �i.e., the lamel-
lar normal is parallel to the velocity gradient direction�, the
perpendicular �in which the lamellar normal is parallel to the
vortex direction�, and the transverse orientation �that is, the
lamellar normal is parallel to the velocity direction� which is
usually a transient nonequilibrium state �6–11�. However, the

fundamental understanding on the mechanism of the selec-
tion of one orientation over the other, the dynamics of the
interconversion between these orientations, and the detailed
influence induced by shearing still remains unraveled. It is
worth pointing out that in situ, time-resolved experiments are
providing insightful information on the actual processes of
the structural evolution that can occur during flow-induced
alignment of ordered block copolymers �11–14�.

Due to the spectacular increase in computing power over
recent years, computer simulation has become a powerful
tool to investigate the behavior and properties of complex
macromolecular systems �15–18�. The Monte Carlo �19�
method can be adopted to study the equilibrium properties of
such systems in an acceptable amount of computer time. Re-
cently, the dynamic density functional method �20–22�, time-
dependent Ginzburg-Landau �TDGL� method �23,24�, and
cell dynamical method �25–27� had been developed to study
the dynamics of complex polymer systems. Molecular dy-
namics can be a more appropriate method of the study of
nonequilibrium properties. However, the simulation of poly-
mers at the atomistic scale is a very demanding task because
of the large length scale and the wide range of time scales.
Therefore, coarse-grained methods have been developed in
an attempt to reduce the complexity of the atomistic simula-
tion model. For example, Guo, Kremer, and Soddemann �28�
used a coarse-grained model successfully to study the shear-
induced alignment of amphiphilic systems by nonequilib-
rium molecular dynamics. Among those various methods, the
dissipative particle dynamics �DPD� �29–33� is a promising
technique for the modeling of the rheology and morphology
of complex liquids. DPD uses rather soft particles �beads�
which represent a cluster of atoms, to simulate fluids on a
mesoscopic scale. This reduces the number of particles taken
into account and permits a large integration time step. Fur-
thermore, by incorporating the momentum-conserving sto-
chastic thermostat and satisfying the fluctuation-dissipation
theorem �based on the work by Español and Warren �31��,
the DPD technique can produce a well-defined canonical
�NVT� ensemble and can reproduce momentum propagation
correctly, which is often quite important in the dynamics of
complex fluids. Block copolymers can be simulated with this
technique by linking DPD beads together with entropy*Corresponding author. Email address: luzhy@mail.jlu.edu.cn
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springs �34,35�. Groot and Madden �36� had successfully
used this method to study the microphase separation of linear
diblock copolymers, the results are consistent with those pre-
dicted by mean field theory. Inspired by their pioneering
work, and being aware of the significance of the shear flow
in the industrial processing, we study the behavior of linear
diblock copolymers under homogeneous simple shear via the
DPD technique.

II. DPD IN MORE DETAIL AND MODEL CONSTRUCTION

In the DPD method, the force experienced by particle i is
composed of three parts: a conservative force FC, a dissipa-
tive force FD, and a random force FR. To model the block
copolymers, we tie the adjacent beads in a single polymer
chain by harmonic spring force FS. Each force is pairwise
additive:

fi = �
j�i

�Fij
C + Fij

D + Fij
R + Fij

S � , �1�

where the sum runs over all other particles within a certain
cutoff radius rc to speed up the force calculation.

The conservative force is a soft repulsion acting along the
line of centers and is determined by

Fij
C = ��ij�1 − rij/rc�r̂ij �rij � 1� ,

0 �rij � 1� ,
�2�

where �ij is a maximum repulsion between particle i and
particle j; rij =ri−r j, rij = �rij�, and r̂ij =rij / �rij�. The number
density of our model is three. The repulsion parameter is
then related to the Flory-Huggins �-parameter by:

�ij � �ii + 3.27�ij �� = 3� , �3�

where the interaction parameter between the same bead type
�ii equals 25 to correctly describe the compressibility of wa-
ter �32�. We are trying to deal with a general model system;
water is a suitable representative of liquids for this purpose
because its compressibility is larger than other liquids and
the values do not differ significantly.

The dissipative force and the random force are given by

Fij
D = − ��D�rij��r̂ij · vij�r̂ij, Fij

R = 	�R�rij�

ij

	�t
r̂ij , �4�

where � is the friction constant which controls the extent of
heat dissipation in a time step. �Note that the negative sign in
front of � indicates that the dissipative force is opposite to
the relative velocity vij thus in effect dissipates the heat.� 	 is
the noise strength which controls the energy pumped into the
system in a time step. �D and �R are r-dependent weight
functions vanishing for r�rc=1, vij =vi−v j, and 
ij is a ran-
dom number with zero mean and unit variance. These two
forces also act along the line of centers and conserve linear
as well as angular momentum. Note that there is an indepen-
dent random function for each pair of particles. To correctly
produce the canonical ensemble, it has been proven �30� that
the following relation should hold:

�D�r� = ��R�r��2, 	2 = 2�kBT . �5�

The dissipative force and the random force, when coupled
through the above relations, can act as a thermostat. To make
things simple, we also choose �32�

�D�r� = ��R�r��2 = ��1 − r�2 �r � 1� ,

0 �r � 1� ,
�6�

and 	=3.67. The bond force is

Fij
S = Crij �7�

when bead i is directly bonded to bead j. The parameter C is
set to be 4.0.

The time evolution of the particles is governed by the
classic Newton’s equations of motion

dri

dt
= vi,

dvi

dt
= fi. �8�

The integration scheme used here is based on the modified
velocity Verlet algorithm according to Groot and Warren
�32�. For easy numerical handling, we have chosen the cutoff
radius, the particle mass, and the temperature as follows

rc = m = kT = 1. �9�

As a consequence, our unit of time 
 is


 = rc
	m/kT . �10�

The time step is 0.06 in DPD time unit which is a tradeoff
between good temperature control and possible maximum
time step size. Recent studies �37,38� imply that, in ordered
microphases which consist of DPD beads that are connected
by springs, artifacts may appear if a relatively large time
step such as 0.06 is employed. Under nonequilibrium condi-
tions the artifacts are supposed to become even more
pronounced. Following Ref. �37�, we have performed
additional simulations with time step 0.06 to examine the
spatial variations of the kinetic temperatures of different
bead types. However, we have not found any significant
spatial variations. Furthermore, we have checked the effects
of different time increment sizes on the space-resolved nor-
mal pressure profile of the layered system with f =0.5 and
�N � 46. The artifacts do exist for a time step 0.06 as the
deviations of the normal pressure profile from the constant
“bulk” value are observed. To ensure that such artifacts do
not affect our observations and conclusions of the morpho-
logical behavior of the simulated diblock copolymer systems
under shear, we use a smaller time step �0.03� to perform
some additional simulation runs in the cases of the parallel
reorientation, the parallel-perpendicular reorientation, the
double undulation, and so on, whose definition will appear in
the following discussion. The morphological behavior is the
same as that we have obtained using time step 0.06. There-
fore, we still choose 0.06 as the time increment for saving
the computation time to the maximum.

The selection of the parameters mentioned above which
define the model, such as 	, �, and C, is mainly in accor-
dance with Refs. �32,36� since our purpose is to study the
general model that used in DPD method.
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There are several methods to model shear flows
�29,39–41�. In this study, we used the Lees-Edwards periodic
boundary conditions �PBC� �15,42� to set up and maintain a
steady linear velocity profile with gradient �̇=dvx /dry. The
planar shear flow profile is

u = �̇yix. �11�

The flow direction is parallel to the X axis, the velocity gra-
dient is along the Y direction, and the Z axis represents the
vortex direction. u is the flow velocity vector, and ix is the
unit vector in the flow direction. Care must be taken that the
Reynolds number of the system should not be too large, oth-
erwise microturbulence may occur and the system becomes
unstable �43�.

A box of size 20�20�20 is simulated with Lees-
Edwards PBC. Thus in total 24 000 beads are present in
the box. The beads can be assigned of type A or type B
on demand before the simulation starts so as to study differ-
ent systems of different compositions. The number of beads
in a single block copolymer chain is 10, while the composi-
tion of the chain may vary. We use AmBn to indicate a block
copolymer chain composed of m A beads and n B beads.
The composition fraction of bead A is thus determined by
f =m / �m+n�.

In computer simulations of lamellar systems, the dimen-
sion in the normal of the layer should be at least larger than
two layer-spacings in order to obtain reliable results. In most
of our simulations, the periodicity is 3. It is argued that the
box size with 20�20�20 may not be large enough to obtain
quantitatively accurate measurements. For computational ef-
ficiency, our simulations are run at a fixed volume and aspect
ratio, as a result the box is likely to create finite size effects
as its dimension may not be compatible with the equilibrium
layer spacing. In order to obtain an estimation of the finite
size effects, we perform some additional simulations with
varied box dimensions and aspect ratio on a parallel lamellar
system with f =0.5 and �N=46. A perfect equilibrium,
tensionless lamellar system should possess equal global
averages of the pressure tensor diagonal components, i.e.,
Pxx= Pyy = Pzz �44�. These values, however, in our case
�20�20�20 box� are Pxx=21.569, Pyy =21.520, and
Pzz=21.568. That is, Pxx= Pzz� Pyy which indicates that the
layer system is under dilatation. This is due to the incompat-
ibility between the layer spacing and the box geometry.
Therefore we compress the simulation box in the dilated di-
rection �the Y direction� and expand the box in the other two
directions, at the same time, we keep the volume constant.
We find that when the length of the box in the Y direction,
Ly, is 97.9% of the original value, Pxx= Pzz= Pyy. The defor-
mation is not quite large. As our goal is the study of mor-
phological changes associated with the shearing process, the
finite size effects are not likely to strongly affect our results
and conclusions. Furthermore, as a recent study shows �45�,
when purely repulsive conservative potential is used, finite
size effects are not severe for a system as large as, say,
20�20�20.

III. SIMULATION RESULTS AND DISCUSSION

We have studied diblock copolymers with different com-
positions �from f =0.3 to f =0.5�. The LAM structures are
obtained by changing �N over a certain value. In order to
observe the response of these structures to the relatively
weak, intermediate, and strong shear flows, we have set the
shear rates to 0.001, 0.01, 0.1, and 0.2 in reduced units,
respectively. The choice of these values are based upon our
experience rather than theoretical deduction, as these shear
rates can lead to different phenomena and to our knowledge
there is no satisfactory theory in DPD method yet that can
predict which shear rates we ought to choose. To understand
the simulation results more directly and intuitively, we visu-
alize the output data by plotting the isodensity surface of the
monomer A. The isodensity value is 1.5.

First, we would like to point out a common observation in
our simulations. In every system we have investigated, the
application of shear dramatically accelerates the evolution of
the system to the final structure when the shear rate is suffi-
ciently large �in our simulations the threshold is of the mag-
nitude of 0.0001�. Generally speaking, it usually takes tens
or even hundreds of thousands time steps for a system to
reach the final equilibrium state without shear. When the
shear is applied, however, the system can achieve the final
steady structure faster by one to several orders of magnitude
depending on the applied shear rate, and the final structure is
oriented by the flow. This effect implies the application of
shear flow in industrial block copolymer processing to speed
up the formation of desired globally aligned ordered struc-
tures. In the following we begin to focus on two interesting
shear effects.

A. Shear-induced reorientation

Over the last decades a large number of experiments had
been performed on the reorientation behavior of LAM struc-
tures under various shear flows. For a review, see Hamley
�46�. It is now clear that large amplitude oscillatory shear
�LAOS� at different frequencies can be used to produce ei-
ther a parallel or perpendicular alignment of a diblock co-
polymer lamellar phase. Recently, Leist et al. �47� showed
that the reorientation can be described as a function of the
shear rate rather than as a function of the oscillatory fre-
quency. We thus use the simple steady shear in our simula-
tions. Koppi et al. �9� found that both parallel and perpen-
dicular orientations could be accessed in a poly�ethlene-
propylene�-poly�ethylethylene� �PEP-PEE� diblock system
depending on the shear rate and temperature. They specu-
lated that lamellar undulations caused by the vorticity of the
shear field would cause the parallel alignment to be unstable
relative to the perpendicular alignment. They also found that
the perpendicular orientation could be obtained by shearing
an already parallel-oriented system at a higher shear rate, but
the reverse process was not observed. Kornfield and co-
workers used birefringence measurements on a nearly sym-
metric poly�styrene�-poly�isoprene� �PS-PI� diblock system
sheared in real time �48�. They found that at high frequencies
a parallel orientation was obtained, while at lower frequen-
cies they obtained the perpendicular orientation. In either
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case, a relatively fast process took place first then followed
by a slow process. The fast process was the depletion of
lamellae in the transverse orientation when forming the ulti-
mate perpendicular orientation and the depletion of perpen-
dicular lamellae when forming the ultimate parallel structure.
Generally speaking, however, in experiments it is not known
in advance which orientation �parallel or perpendicular� is
preferred for a specific system.

We have prepared a randomly oriented LAM structure
with f =0.5 and �N=46, at which the system is away from
both weak and strong segregation limits. �In fact we have
prepared several randomly oriented LAM with different ori-
entations relative to the simulation box and let them undergo
reorientation. The results are the same.� Then steady shears
of various shear rates 0.001, 0.01, and 0.2 are applied, re-
spectively. For each shear rate, we evolve the system until a
final stable state is achieved. Under the relatively small ��̇
=0.001�, as well as the intermediate shear rates �for example
�̇ � 0.01�, the lamellae take the parallel orientation, while
under the strong shear ��̇ � 0.2� perpendicular orientation is
observed. The morphological changes during the reorienta-
tion processes subject to different shear rates are contrasting.
When the shear rate is rather small, it seems that the lamellar
structure is largely retained �see Fig. 1�. After some thousand
time steps, the layers as a whole gradually reorientate so as
to take the parallel orientation �Fig. 1�b��. It looks like that
the shear flow is “rotating” the layers while the layers are
still intact. Deformations can take place along with the reori-
entation process �Fig. 1�c��. Neighboring layers may be
linked at some regions by interlayer rodlike microdomains
��Fig. 1�d���. Finally, when the lamellae have aligned per-
fectly in parallel with the shear plane, the microdomains be-
tween the adjacent layers disappear, and the flat lamellar
structures are recovered �Fig. 1�e��.

When the shear rate is quite large, however, it appears to
us that the reorientation process can be divided into two
stages �see Fig. 2�. At the first stage, the strong shear flow
destroys the lamellar layers completely, the flat layers disap-
pear, and the microdomains are totally disordered along the
gradient and vortex axes. Note that even in this quite disor-
dered state, due to the strong shear rate, the microdomains
are somewhat orientated. That is, the microdomains are
aligned to the flow direction. This breakup process is very
fast, within several thousand time steps. At the second stage,
as the thermodynamics of this system favors the lamellar
structure, the microdomains begin to reform the LAM struc-
ture and the shear flow induces the structure to be perpen-
dicularly oriented, i.e., the lamellae reformation process and
the reorientation process proceed concurrently. However, a
satisfactory interpretation of the preference of the perpen-
dicular orientation over the parallel one, is still needed to be
thoroughly studied. This second process is relatively slower
than the preceding one, but is still much faster than the zero
shear rate case. We find that the critical shear rate above
which the LAM is perpendicularly oriented is around 0.2. If
the shear rate is much larger than this value, the temperature
of the system becomes unstable. This indicates the presence
of artifacts introduced by the Lees-Edwards boundary condi-
tions. The energy introduced by the Lees-Edwards boundary
condition when particles cross the XY plane at Z=−10 or

Z=10 is too large to be effectively dissipated by the thermo-
stat. Thus the systems with shear rates much larger than 0.2
are likely to produce unreliable results. Consequently we set
0.2 as the highest acceptable shear rate in this study. Beneath
this shear rate, the temperature of the system is well con-
trolled and other properties such as pressure, order param-
eter, mean square end-to-end distances behave normally.

When we apply the strong shear with rate �̇=0.2 to the
parallel-oriented system which is obtained previously by the
application of the weak shear with �̇=0.001, a direct
parallel-to-perpendicular transition occurs �Fig. 3�.

The whole process looks like the layers are forced to dis-
tort, so large amplitude local dislocations occur. Adjacent
layers can become interconnected through the combination
of their local dislocations. Layers are greatly deformed dur-
ing this process, but are not destroyed, which can be further
identified later through careful examination of the time evo-
lution of the order parameter of the system. The interwound
layers then evolve into the final perpendicular orientation. It

FIG. 1. Snapshots of the system under shear. �̇=0.001, f =0.5,
�N=46. �a� is the original randomly oriented lamellae. �b�– �e� are
snapshots taken at every 10 000 time steps. The box is of dimension
20�20�20.
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is clear now, that in such DPD model systems which are near
the weak segregation limit, the perpendicular orientation is
the favored orientation under high shear rates.

It is worth a further consideration here. The shear rate is
0.2, which is identical to the one that we have used to per-
pendicularly reorient the randomly oriented lamellae. In the
latter case, layer breakup takes place �Fig. 2�. But in this
parallel-to-perpendicular transition the layer breakup does
not occur. The reason may be that the lamellae are already
aligned previously by the weak shear and parallel oriented,
the interactions between the flow and the layers have been
greatly reduced by the adoption of the parallel orientation.
Therefore the flow is not able to break up the layers. The
application of strong shear to the perpendicular oriented
lamellae, however, seems unable to cause the transition to
the parallel one.

Besides the snapshots of the systems, we have monitored
the structural evolution of these systems with f =0.5, �N
=46 as functions of shear rate and time by the time-resolved

orientational order parameter �Fig. 4� measured by the Saupe
tensor �49�

Q�� =
3

2

r̂�r̂� −

1

3
���� . �12�

Here, r̂ is a unit vector directing along the bond which con-
nects the A block and the B block in a single diblock, i.e., the
bond is confined to the interface. The characters � and � are
Cartesian indices, � is the Kronecker symbol. The largest
eigenvalue of the volume average of Q��, S, is the order
parameter. S is zero in the completely disordered state, and it
should be one if the system is perfectly aligned.

We start from the configuration of Fig. 1, that is, ran-
domly oriented lamellae, then perform two simulations, with
the shear rates being 0.001, 0.2, respectively. We are familiar
with these two values, since they are exactly the ones we
used to carry out the parallel and perpendicular reorientation
processes, respectively. The order parameter S of the initial

FIG. 2. Snapshots of the system under shear. �̇=0.2, f =0.5,
�N=46. �a� is the original randomly oriented lamellae. �b�– �e� are
snapshots taken at every 5000 time steps. The box is of dimension
20�20�20.

FIG. 3. Snapshots of the system under shear. �̇=0.2,
f =0.5, �N=46. �a� is the parallel oriented lamellae. �b�– �e� are
snapshots taken at every 5000 time steps. The box is of dimension
20�20�20.
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randomly oriented lamellae is around 0.30. In the case of
�̇=0.001, S gradually goes down. It takes about 20 000 time
steps for the system to reach its order parameter minimum,
0.17, approximately. Then, S slowly goes up, finally it re-
stores the initial value, i.e., 0.30. We noted that the minimum
is 0.17, which indicates the system still shows some degree
of order. It is consistent with our snapshot �c� in Fig. 1. The
layers are distorted, but still show layered character. While
the shear rate is much larger, �̇=0.2, the scene is different.
Shearing the lamellae for only about 1000 time steps makes
the system nearly completely disordered. It is a quite steep
drop, especially compared to the former case. The minimum
is 0.05. The system then evolves into lamellae because this is
the thermodynamically favorable structure. This process is
relatively slow, as it takes about 15 000 time steps or so.
After this process, S is 0.3, the typical value for lamellae for
this system.

It is noteworthy that the time evolution of S for parallel-
perpendicular transition is different from either case men-
tioned above. S fluctuates around 0.30, without any signifi-
cant minimum. As we have argued, this may due to the fact
that the parallel alignment is already a “frictionless” orienta-
tion, any strong interaction between the layers and the flow
seems unviable. As a result, the order parameter changes are
small.

B. Shear-induced undulations

The undulation instability is commonly encountered when
a layered structure is under external stresses �49,50�. Study
of such instabilities is extremely well established in struc-
tural geology. Undulations in low molecular weight, smectic
A liquid crystals, have been extensively studied. Wang �51�
showed theoretically that undulation instabilities can occur in
block copolymers caused by external fields. Shear-induced
undulations of block copolymer melts and solutions were
also reported �52,53�.

Soddemann �54� studied shear-induced undulation via
both molecular dynamics simulation and theoretical deduc-
tion. When the layers are subject to a shear flow, the normal

of the layer will be unaffected as long as the reorientation
does not occur. The principal axes of the molecules, how-
ever, will tilt due to the flow. The tilt angle, �, is defined as
the angle between the normal of the layer n̂ and the direction
of the principal molecular axis, p̂ �55�. It is this tilt that leads
to an effective dilatation of the layers. Consequently, when
the effective dilation exceeds a certain value, a layer undu-
lation instability will occur �54,56�. Soddemann et al. further
found that the tilt angle � is proportional to the applied shear
rate, and the simulated and theoretical predicted critical tilt
angle for undulation instability was about 0.18 and 0.35, re-
spectively. We have calculated the tilt angle as a function of
shear rate and find that, in this system, the critical shear rate
beyond which undulation takes place is about 0.04, and the
corresponding tilt angle is about 0.40. We ascribe this rather
high value compared to Soddemann’s to the soft potential
that DPD model used. In spite of this tilt angle difference,
however, a linear relationship is also present in our system
when the shear rate is between 0.001 and 0.04.

According to Singer �56�, without a boundary condition,
the sinusoidal instability would appear first above a certain
strain threshold. As the strain past the threshold value, the
modulation pattern would take the chevron shape. Read et al.
�57� studied the sinusoidal layer buckling in a block copoly-
mer thermoplastic elastomer and its transition to the chevron
with a finite-element technique.

We prepared a system with f =0.4 and �N=35, at which
the system is near to the weak segregation limit �WSL�. Be-
fore applying the shear flow, we have equilibrated the system
to a randomly oriented lamellae phase �Fig. 5�a��. There are
some random perforations in the lamellae because the system
is near to the WSL. Then steady shears of �̇= 0.001, 0.01,
0.1, and 0.2, respectively, are applied to the system. When
the shear rate is relatively small, for example �̇=0.001, as
can be expected, the lamellae are reoriented to the parallel
alignment, though the layers are not quite flat. Unusual phe-
nomenon appears when the shear rate is increased to 0.01. As
shown in Fig. 5�b�, the parallel oriented lamellae exhibits
sinusoidal undulations, which is quite similar to the one that
Wang et al. discovered �52�. Note that the lamellae normals
are confined to the vortex-velocity gradient plane, in accor-
dance with the results of theories �58,59�, due to free energy
considerations. Interestingly, when this undulation instability
is relaxed with the shear flow being turned off for a long
enough period of time, a quite strange structure is obtained
�Fig. 5�c��. It is “bidirectionally undulating,” that is, the
lamellae undulate both in the vortex-velocity gradient plane
and the velocity gradient-velocity plane. We attribute this
strange undulation instability as the consequence of the pre-
vious undulation instability and this phase is a metastable
state lying in the pathway from the undulated to the flat
lamellae. When the shear is off, the sinusoidally shaped lay-
ers try to relax themselves to a stable state. It is obvious that
the most stable structure of this system is LAM. But before
reaching this structure, the system is trapped into the meta-
stable bidirectionally undulating structure. When the shear is
turned on again, the layers return back to the sinusoidal
shape. As a test for our speculation, we apply a relatively
small shear with �̇=0.001 to the bidirectionally undulating
system. The flat lamellae are restored. The weak shear flow

FIG. 4. Order parameter as functions of shear rate and time.
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seems effective enough to help the system overcoming the
free energy barrier to achieve the stable lamellar structure.

Though undulating, the layers still look like they are
aligned parallel. We also find that defects may exist. When
the shear is stronger further, i.e., �̇=0.1, nothing strange hap-
pens, the final state is with flat lamellar structure. As we have
described above, weak shear seems only to reorientate the
lamellae, while intermediate shear is likely to induce undu-
lation instability, and strong shear can lead to suppression of
undulation and produce quite flat lamellar layers. Surpris-
ingly, when the shear rate gets even larger, that is, �̇=0.2, the
sinusoidal undulation emerges again �Fig. 5�d�� but with a
perpendicular orientation.

We have simulated a system with f =0.5 and �N=150,
i.e., the system is in the strong segregation limit �SSL�. Fig.
6�a� shows the equilibrium morphology of this system with-
out shear. When the shear rate is equal to 0.2, we encounter
the “chevron” undulation instability �Fig. 6�b��. We thus
speculate that, in DPD models, it is relatively more likely for
the lamellae to exhibit chevron undulation in the SSL, while
in the weak segregation limit �WSL�, the sinusoidal undula-
tion can take place. Relaxation without shear of the chevron
for a quite long time again leads to the bidirectional undula-
tion �Fig. 6�c��. It implies that the bidirectional-undulation

instability may be universal in these circumstances. In Sing-
er’s work on the buckling induced by dilative strain �56�,
similar bidirectional buckling patterns are predicted.

IV. CONCLUSIONS

In this study, we use the DPD technique to explore the
morphology variations of the lamellar phase of linear
diblocks under various strengths of simple shears. The par-
allel and perpendicular reorientation phenomena reported by
many researchers have been successfully reproduced in our
simulations. By taking the inherent advantages of computer
simulations, we can take snapshots of the system of interest
at any time during the evolution of the system under shear.
That is to say, we can do “real-time” tracing of the evolution
of the system. By analyzing the snapshots, as well as the
time evolution of the order parameters, we suggest two dif-
ferent mechanisms as to how reorientations of the lamellae
take place under weak and strong shears, respectively. In the
low shear rate case, the layered structure is always retained,
the reorientation is achieved via layer rotation. On the other
hand, when the shear rate is large, the layers are completely
destroyed, the reorientation is accomplished through a two-
step process: a very fast layer breakup process followed by a
relatively slow thermodynamics-driven lamellar reformation
process. The critical shear rate beyond which the shear is
perpendicularly orienting is found generally to be about 0.2,
though it may vary from system to system. The parallel to
perpendicular orientation process is believed to be via a
different path.

The sinusoidal as well as chevron instabilities are identi-
fied. When relaxed, bidirectional undulation can occur.
Available theories on these phenomena are mostly based on

FIG. 5. Snapshots of the system under shear. �̇=0.2, f =0.4,
�N=35. �a� is the original randomly oriented lamellae. �b� is the
sinusoidal undulation. �c� is the bidirectional undulation. The box is
of dimension 20�20�20.

FIG. 6. Snapshots of the system under shear. �̇=0.2, f =0.5,
�N=150. �a� is the original randomly oriented lamellae. �b� is the
chevron structure. �c� is the bidirectional undulation. The box is of
dimension 20�20�20.
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an energy minimization approach. Our study is mainly tar-
geted to validate the DPD technique, combined with the
Lees-Edwards periodic boundary conditions, as a promising
tool for the mesoscopic simulations of block copolymer mi-
crophase separation behavior under shear. As we have shown
in this paper, many interesting, important phenomena associ-
ated with block copolymer microphase separation under non-
equilibrium conditions which had been well identified in nu-
merous experiments, have been satisfactorily reproduced in
our model. However, due to its characteristic soft potential,
as well as some other subtle differences, from traditional
molecular dynamics methods, for example, the incorporation
of stochastic forces, a direct quantitative match of results
from DPD and MD may be hard to achieve.

In this study, we implement the steady simple shear. Vari-
ous patterns of shear flows, for example, oscillatory and re-
ciprocating shears, may lead to rather different results. The
effects of shears on other microphases of block copolymers
such as hexagonally packed cylinders and body-centered-
cubic spheres, and the relation between block copolymer
structure and the morphology variation during shear, require
further endeavors.
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